Poisson Geometry of the Grothendieck Resolution of a Complex Semisimple Group

نویسندگان

  • SAM EVENS
  • JIANG-HUA LU
چکیده

We study a Poisson structure π on the Grothendieck resolution X of a complex semi-simple group G and prove that the desingularization map μ : (X,π)→ (G,π0) is Poisson, where π0 is a Poisson structure such that intersections of conjugacy classes and opposite Bruhat cells BwB− are Poisson subvarieties. We compute the symplectic leaves of X and show that (X,π) resolves singularities of (G,π0).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Symplectic Leaves and Integrable Systems in Standard Complex Semisimple Poisson-lie Groups

We provide an explicit description of symplectic leaves of a simply connected connected semisimple complex Lie group equipped with the standard Poisson-Lie structure. This sharpens previously known descriptions of the symplectic leaves as connected components of certain varieties. Our main tool is the machinery of twisted generalized minors. They also allow us to present several quasi-commuting...

متن کامل

De Rham and Infinitesimal Cohomology in Kapranov’s Model for Noncommutative Algebraic Geometry

The title refers to the nilcommutative or NC-schemes introduced by M. Kapranov in Noncommutative geometry based on commutator expansions, J. reine angew. Math 505 (1998) 73-118. The latter are noncommutative nilpotent thickenings of commutative schemes. We consider also the parallel theory of nil-Poisson or NP -schemes, which are nilpotent thickenings of commutative schemes in the category of P...

متن کامل

A Poisson Structure on Compact Symmetric Spaces

We present some basic results on a natural Poisson structure on any compact symmetric space. The symplectic leaves of this structure are related to the orbits of the corresponding real semisimple group on the complex flag manifold.

متن کامل

Poisson traces, D-modules, and symplectic resolutions

We survey the theory of Poisson traces (or zeroth Poisson homology) developed by the authors in a series of recent papers. The goal is to understand this subtle invariant of (singular) Poisson varieties, conditions for it to be finite-dimensional, its relationship to the geometry and topology of symplectic resolutions, and its applications to quantizations. The main technique is the study of a ...

متن کامل

Poisson Structures on Complex Flag Manifolds Associated with Real Forms

For a complex semisimple Lie group G and a real form G0 we define a Poisson structure on the variety of Borel subgroups of G with the property that all G0-orbits in X as well as all Bruhat cells (for a suitable choice of a Borel subgroup of G) are Poisson submanifolds. In particular, we show that every non-empty intersection of a G0-orbit and a Bruhat cell is a regular Poisson manifold, and we ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006